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Aerodynamics of Very Slender Rectangular
Wing Bodies to High Incidence

Erik S. Larson*
Aeronautical Research, Institute of Sweden, FFA, Stockholm, Sweden

Results from slender body theory and linearized theory have been used to formulate semiempirical expressions
for steady, symmetric aerodynamic coefficients of a family of slender wing-body combinations up to angles of
attack of about 50 deg. The wing planform is restricted to rectangular wings with an exposed aspect ratio of less
than 0.5. The results indicate the capability of slender body theory and linearized theory to provide a basis for
the construction of short-cut methods, usable in an early stage of project design where flow situations are still
too complicated to be handled by more advanced theories. In order to obtain the present result, it has been
necessary to make use of subjective assumptions and an empirical correlation. The result, therefore, is not
unique. It is, however, a step toward a practical analytic representation of the symmetric aerodynamic
characteristics of the family of wing-body combinations treated herein.
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Nomenclature
= exposed aspect ratio, (b-D)2/S
= projected partial surfaces of the body
= span of wing-body combination
= lift-dependent drag coefficient = lift depen-
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= cylinder crossflow drag coefficient
= normal force coefficient = normal force/<?S
= pitching-moment coefficient = pitching mo-

ment/qSD
= root chord
= body diameter, reference length, drag
= correction factors
= see Eq. (2)
= d(CNp)d(smotcosa)
= d(two times leading edge suction force from

one side/<?S) /dsin2o:
= d(two times tip suction force from one side/<?S)

/dsin2ce
= length of the body
= length of the afterbody
— nose length
= free stream Mach number
= normal force
= freestream dynamic pressure
= radius of the body
= reference area, irD214
= half span of wing-body combination
= length coordinate, measured streamwise

either from body apex or from the wing leading
edge

= angle of attack
= a T Ace; upper sign for a > 0, lower sign for a < 0
= [0.14(ce=Fce5/)]2,, a>a5/ , empirical correction;

signs as for a
= 23.5 + (9.2-c/£>) [ 4 ( l - # / < > ) 2 ] -', empirical

correction

= correction factor depending on length of the
cylinder

= dimensionless length coordinate, x/D
= reference point at 0.55L from nose of body
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Subscripts
B = body
B(W) = body in presence of wing
W = wing
W(B) = wing in presence of body
WB = wing-body combination
ac = center of pressure
eg = center of gravity
fb = forebody
/ = interference
k,t = different partial contributions
n = nose
p = potential or attached flow
pr = projection
st = stall
v, le = vortex effect at the leading edge
v, se = vortex effect at the side edge

Introduction

IT was recognized quite early by Ward,1 Flax and
Eawrence,2'3 and Morikawa,4 that ratios between partial

loads on a wing-body combination were practical and flexible
tools for short-cut methods usable in early project design
work. The well-known coefficients Kw and KB were derived
by slender body theory and were found to be applicable not
only to slender configurations but also to configurations with
wings of larger aspect ratios; however, restrictions on
minimum length of afterbody had to be observed5 for cap-
turing full interference on the body caused by the wing. The
contributions were all obtained in the supersonic speed
domain, and the angles of attack were low. It is reasonable to
assume, within the concept of slender configurations, that the
characteristic ratios would also be applicable at transonic and
subsonic speeds. A systematic test of this has not been ac-
complished yet.

The purpose of this article is to present semiempirical
expressions for total aerodynamic coefficients of very slender
rectangular wing-body combinations at low speed and up to
high incidence. For the derivation experimental results,
characteristic ratios and results from linearized theory are
used. The analytic expressions are quantified through em-
pirical correlation. Resulting constants, thus, depend on the
particular test models and test conditions. Workable analytic
expressions of this kind would be flexible tools in preliminary
design work. In addition, the result could serve as a com-
plement to other prediction methods which either do not give
the very slender rectangular wing a special treatment or ex-
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elude very slender wings from the domain of applicability. An
example of the former situation is the high-incidence (from 0
to 180 deg) result obtained by Joergensen,6 and an example of
the latter is the Missile 1 prediction code by Nielsen et al.7

Recent low-speed experimental results8 on very slender
wing-body combinations up to angles of attack of 45 deg are
well suited for the present construction of semiempirical
expressions. The configurations tested in Ref. 8 consisted of a
body of revolution with a blunt nose and a set of nine slender
rectangular wings in midwing position. Figure 1 shows the
configurations with largest and smallest wings, and the in-
serted table provides the parameters for the test models. The
wing span and root chord are varied so that the exposed wing
aspect ratio is in the interval QA<A<0.3. The total body
length is held constant.

The presently derived semiempirical result is restricted to
subsonic speed, and to steady and symmetric total coef-
ficients.

Semiempirical Modeling

Normal Force Coefficient
The normal force on a slender wing-body configuration is

composed of partial loads that are combined as

(1)

section, for the wing in the presence of the body is

NWB=NB+(Nw+Nwi) (1 +

in order to make use of a result from slender body theory
obtained by Lawrence and Flax,3 namely

NR

l-(R/s)2 (2)

Equation (2) is the ratio between the normal force on the body
caused by interference from the wing and the total normal
force on the wing in situ. It is assumed that Eq. (2) holds,
irrespective of the nose shape and the forebody length; i.e.,
irrespective of the downwash from the forebody vortices. The
denominator in Eq. (2) is approximated by

^w(B] =«*("*»

X [Kpsina cos v>le + KVjSe)sin2a] (4)

The K coefficients have been determined numerically by
Lamar,10 and are represented by semiempirical expressions12

compiled in the Appendix. For the small aspect ratios of
interest here (A <0.5), Kp, and Kv,\e can be approximated by
straight lines, as shown in Fig. 2, where KVtSe is plotted also
for comparison with Lamar's10 result.

The normal force on the body, NB in Eq. (1), refers to the
gross body except for the length covered by the root chord c.
The normal force coefficient for this reduced body is obtained
by results from slender body theory developed by Munk,13

Alien and Perkins,14 and Kelly,15 and compiled by
Joergensen,16 and are

cos(ce/2) (Apr/s) sin2 (5)

where Apr =Aj +A2 is the sum of the projected areas of the
fore- and afterbody.

A preliminary evaluation of Eqs. (1-5) shows that a
correction factor fl is needed for decreasing c/D (i.e., for
increasing afterbody lengths), and that at the higher angles of
attack, a correction Ace due to start of stall improves the
correlation with experiment.8 Furthermore, it seems practical
to use an explicit correction term instead of connecting it to
the upwash term as in Eq. (4).

Compiling the above results for the normal force coef-
ficient on wing-body combinations of the type discussed here,
results in the following semiempirical expressions:

C/vWB =sin 2a cos (a/2)

-- (c/2s) [(s/R)2-!]
7T

(Apr/s) sin2 a

Nw + Nwi = NW(B) =NW

= Nw(l+R/s+fj)

Wl /Nw ) x(l+f(R/s, c / D } ) (6)

(3)

The term R/s is the Beskin upflow result,9 and// is an em-
pirical correction factor.

The normal force on the rectangular wing alone is obtained
by linearized theory (extended Multhopp method) according
to Lamar10 and the suction force analogy by Polhamus.11 The
total normal force coefficient, referred to the body cross
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Fig. 1 The wind tunnel test models of Ref. 8. Largest and smallest
wing attached to the body are shown with a table of geometric
parameters of all nine wings.

where ce contains empirical corrections, Ace and asf (see
Nomenclature), for the effects caused by start of stalling and
vortex breakdown. The corrections are constructed by means
of the test results in Ref. 8 (nine configurations). Other
relevant results for a control of Ace and ast in the low-speed
domain have not been found in the literature. The correction
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Fig. 2 tf coefficients for small aspect ratio rectangular wings.
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factor/is taken to be

f(R/s,c/D}=-
9 /R/s-2/9£)(• 19/4-c/D\
4 V R/s+1 / V 19/4 + c/D

R/s>2/9, c/D<19/4 (7)

The K coefficients for A <0.5 are given in the Appendix [Eqs,
(A3-A5) ] and the factor g { R / s } is given by Eq. (2). It may be
noted that for a<0 the factor sin2 a: must be treated as
Is inals ina .

The corrections introduced here are derived under the
restriction that the sum of chord and afterbody is a constant,
namely,

c + La= const = 11D c,La^O (8)

which characterizes the test models of Ref. 8 (Fig. 1).

The Lift-Dependent Drag Coefficient
The lift-dependent drag coefficient of the wing-body

combination is obtained by

(9)

A comparison with experiment is not possible because such
data are not available.

The Pitching-Moment Coefficient
The pitching-moment coefficient on the wing-body com-

bination is first written in a general form as
k (

+CmOB(W)

where

for the body, and

(10)

(11)

(12)

for the wing. According to Eq. (6) k = ?=3', £oc is counted
from the leading edge of the wing; £ref = 9.9 (i.e., 55% of the
body length); and £i e=7. These parameters are constant for
all of the configurations investigated.

The last term in Eq. (10) could represent a moment
originating from the interference on the body, but it is
neglected here because of lack of relevant data. The different
partial normal force contributions are given in Eq. (6). Simple
expressions will be assumed for the respective distances
between the reference point and the different centers of
pressure. Equations (10-12) written in more detail are

CmWB = sin2acos(a/2)

+ - (c/2s)[(s/R)2-l]
7T

+ (KVtlc-A%wvlc+KVtX-A£lVvK

x(l+f(R/s,c/D})+CNw(B} (13)

where CN is equivalent to the third term in Eq. (6),
reduced by me factor [ l + g ( R / s ) ] > and

if the empirical correction factors / and Ace could be derived
directly from the actual flow situation, experimentally or
theoretically.

&£AI = £ref - ecg/4/ = (6.23) (14b)

A^2 = £ref - ecg/12 = - 2.6-0.5 La/D (14c)

for the body, and

(15a)

cos a= (2.9)cosa (15b)

(15c)

(15d)^SB(W) - S r e f - S l e '

for the wing. The constant values for the test models of Ref. 8
are given in parentheses. La/D in Eq. (14c) is shown in Fig. 1.

Comparison with Experiment
The semiempirical expressions, Eqs. (6-8), which give the

normal force coefficient for wing-body combinations of the
special type shown in Fig. 1, are evaluated and compared with
experiment8 in Fig. 3. The cruciform wing-body combinations
were tested at zero roll angle at M=0.44. The Reynolds
number was ReD =0.8x 106. Evidently the semiempirical
representation of the experiment gives a slight overprediction,
but, taken as a whole, is quite satisfactory for practical ap-
plications. Consequently, it is reasonable to presume that it
would be satisfactory for all variants of this type of con-
figuration provided that the exposed aspect ratio of the wing
is less than about A = 0.5.

In Ref. 8, the configuration with the largest wing (Fig. 1)
also was tested in a water tunnel (Mx ^Q,ReD = 1.25 x 106).
The normal force data are inserted in Fig. 3a and compared
with Eqs. (6-8). The computed result is practically the same as
for M=0.44 (solid curve). Up to a = 15-18 deg the difference
between Eqs. (6-8) and the two test results is minor. Above
ex = 20 deg the hydrotest result falls below the test result at
M=0.44; i.e., it is overestimated by Eqs. (6-8). (The pitching-
moment data was not reported.)

Improvements of the semiempirical expressions for the
normal force are desirable. The best result would be obtained
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Fig. 3 Total normal force coefficient in incompressible flow
(M = 0.44, Re D =0.8xl0 6 ) on the wing-body configurations of Fig.
1; a) to c) variation of chord at constant span, and d) variation of span
at nearly constant chord.
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Fig. 4 Center of pressure in incompressible flow (M=0.44,
ReD =0.8x 106) on wing-body configurations according to Fig. 1; a)
to c) variation of chord at constant span, and d) variation of span at
nearly constant chord.

Equations (13-15), representing the pitching-moment
coefficient, are divided by the normal force coefficient, Eq.
(6), in order to obtain the location of the center of pressure.
The result, expressed in body diameters D, is inserted in Fig. 4
for comparison with experiment.8 It can be seen that the
correlation is not too bad. The discrepancies vary with angle
of attack and the largest deviations are found in the interval
10<o;<20 deg for the combinations with the largest span
ratios (s/R = 2A3 and 2.15). It also can be seen that the
discrepancy increases when the chord-to-diameter ratio, c/D,
decreases, which, in the present context, means an increase of
the afterbody length, La/D. When the angle of attack is above
about 20 deg the difference between the semiempirical
representation and experiment decreases. Over the entire
angle-of-attack interval, la I <45 deg, the discrepancy is less
than £>/3; a result that is quite satisfactory for most practical
applications.

A further improvement in the determination of the centers
of pressure of the partial loads is desirable. The primary
concern is the center of pressure of the interference on the
body when the chord is decreased while the length of the
afterbody remains constant. This can be obtained by panel
methods for the linear part of the interference. For the
nonlinear part, partial load measurements or, preferably,
pressure measurements on the body are needed, until a
theoretical solution is accomplished, perhaps by use of the
Euler equations.

Conclusions
The present study demonstrates that slender body theory

and linearized theory provide qualitative guidance in for-
mulating semiempirical representations of total coefficients
on slender combinations, even in cases where the flow
situation is very complicated, and, at present, not manageable
by more advanced theories. The result is not unique since it
depends on subjective assumptions and an empirical cor-
relation. It is, however, a good first step toward an analytic
description of the symmetric characteristics of the con-
figuration family treated herein.

The semiempirical expressions should be applicable
throughout the whole subsonic speed domain; however,
controlled experiments still remain to be done. The correction
factors and the assumed centers of pressure for the partial
loads can be improved by experiment and, sooner or later, by
numerical solutions of higher order theories.

Appendix
The K coefficients in Eq. (4) are represented by semiem-

pirical expressions in Ref. 12. They are

(Al)

(A2)

(A3)

In the case of small aspect ratios (A <0.5) investigated here,
Eqs. (Al) and (A2) can be simplified to

27T

= -4A

(A4)

(A5)

and thus are independent of the Mach number. Equation (A4)
is recognized as Jones' slender wing result.
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